

Energy Efficiency

Understanding Energy Efficiency Practices in Cambodia May 28, 2022, Phnom Penh, Cambodia

Research and Innovation Center (RIC), Thermal Lab Institute of Technology of Cambodia

Bibliography

- 2017-present: Head of Energy Technology and Management Research Unit (ETM), Research and Innovation Center (RIC), ITC
- 2010-present: Lecturer and researcher, Industrial and Mechanical Engineering department, ITC
- 2019: Certified Energy Auditor and Manager Trainer
- 2013: Project researcher, Haruki Sato Lab, Keio University, Japan
- Energy audit experiences:
 - Hospital, commercial building, government building, garment factory.

What and Why Energy Efficiency

Energy Efficiency simply means using less energy to perform the same task – that is, eliminating energy waste.

With the support of

CAMBODIA

LIGER

a4mt

Organised by

sevea

In partnership with (Energy)^{Lab}

Benefits of EE (IEA, 2013)

Forms of Energy

- Energy:
 - Kinetic Energy: energy of movement
 - Potential Energy: stored energy

Energy Equivalents		
1000 joules (J)	1 kilojoule (kJ)	
1 kilowatt-hour (kWh)	3,600,000 J or 3.6 MJ	

Power and Energy

LOW POWER

HIGH POWER

Power: How Fast (Demand)

Energy: How Much (Consumption)

Energy = Power x Time (Units are Wh or kWh)

What is Efficiency?

Efficiency =
$$\frac{Output}{Input} x \ 100\%$$

Device	Efficiency	Input	Output
Electric Heater	100%	Electricity	Heat
LED Lamp	30% - 40%	Electricity	Light
Motors	50 – 95%	Electricity	Mechanical
Pumps/ Fan	20 – 60%	Electricity	Flow
Air Compressor	5 – 15%	Electricity	Air

Energy use drivers

- Climate
- Facility size and age
- Schedules
- Equipment type
- Building design
- Processes
- Organizational culture
- Behavior

Source: DME Building EA Course

Energy Efficiency Standards and Labeling

- Three main types of EE Standards
 - Minimum Energy Performance Standards (MEPS)
 - High Energy Performance Standards (HEPS)
 - Class Average Standards

With the support of

a4mt

CAMBODIA CLIMATE CHANGE ALLIANCE

- Two main types of EE Labels
 - Comparative Labels: EU Energy Label, US EnergyGuide, Thai Energy Label
 - Endorsement Labels: US Energy Star, Korean High-efficiency Certification

Organised by

sevea

In partnership with (Energy)^{Lab}

Lighting EE opportunities

• Low cost

- Better switching- zoning, more switches and levels
- Occupancy sensors and timers
- Reduce overall level and use task lights

• High cost

- Upgrade to more efficient fixture
- Use a more effective fixture layout
- Use a more efficient light source

Source: DME Building EA Course

Images source: https://www.angi.com/articles/how-much-does-installing-light-switch-cost.htm https://www.lightology.com/index.php?module=how_to&sub=desk_task_lighting https://lightjourney.com.sg/blogs/articles/types-of-lighting https://www.indiamart.com/proddetail/led-products-10646093355.html

Reduce cooling Energy

- Maintain the indoor temperature as high as possible
- Use insulation to reduce heat gain
- Use energy efficient or low-E glass for windows
- Reorganize activities inside the building to reduce gain. The corridors should be located along the north face and the conditioned spaces along the south face
- Don't cool unoccupied area

Source: DME Building EA Course

EE Opportunities in Cooling System

• Reduce heat loss/gain by:

- Conduction –add insulation
- Convection minimize air infiltration
- And radiation replace or improve windows, use shading

• Strategy:

- Eliminate waste ensure building need is exactly met by the energy system
- Maximize efficiency select best technology, improve operational and maintenance practices
- Optimize energy supply- select most economical energy source, utilize wast heat

Source: DME Building EA Course

Thank you.

Sarin Chan, PhD

Head of ETM Research Unit, Research and Innovation Center

Institute of Technology of Cambodia

(+855)17387607

Email: sarinchan@itc.edu.kh

https://www.facebook.com/ThermalLAB

